Nap1 Regulates Dictyostelium Cell Motility and Adhesion through SCAR-Dependent and -Independent Pathways
نویسندگان
چکیده
SCAR--also known as WAVE--is a key regulator of actin dynamics. Activation of SCAR enhances the nucleation of new actin filaments through the Arp2/3 complex, causing a localized increase in the rate of actin polymerization . In vivo, SCAR is held in a large regulatory complex, which includes PIR121 and Nap1 proteins, whose precise role is unclear. It was initially thought to hold SCAR inactive until needed , but recent data suggest that it is essential for SCAR function . Here, we show that disruption of the gene that encodes Nap1 (napA) causes loss of SCAR function. Cells lacking Nap1 are small and rounded, with diminished actin polymerization and small pseudopods. Furthermore, several aspects of the napA phenotype are more severe than those evoked by the absence of SCAR alone. In particular, napA mutants have defects in cell-substrate adhesion and multicellular development. Despite these defects, napA(-) cells move and chemotax surprisingly effectively. Our results show that the members of the complex have unexpectedly diverse biological roles.
منابع مشابه
SCAR/WAVE is activated at mitosis and drives myosin-independent cytokinesis.
Cell division requires the tight coordination of multiple cytoskeletal pathways. The best understood of these involves myosin-II-dependent constriction around the cell equator, but both Dictyostelium and mammalian cells also use a parallel, adhesion-dependent mechanism to generate furrows. We show that the actin nucleation factor SCAR/WAVE is strongly activated during Dictyostelium cytokinesis....
متن کاملAbi Mutants in Dictyostelium Reveal Specific Roles for the SCAR/WAVE Complex in Cytokinesis
Actin polymerization drives multiple cell processes involving movement and shape change. SCAR/WAVE proteins connect signaling to actin polymerization through the activation of the Arp2/3 complex. SCAR/WAVE is normally found in a complex with four other proteins: PIR121, Nap1, Abi2,and HSPC300 (Figure S1A available online) [1-3]. However,there is no consensus as to whether the complex functions ...
متن کاملContact-dependent promotion of cell migration by the OL-protocadherin–Nap1 interaction
OL-protocadherin (OL-pc) is a transmembrane protein belonging to the cadherin superfamily, which has been shown to accumulate at cell-cell contacts via its homophilic interaction, but its molecular roles remain elusive. In this study, we show that OL-pc bound Nck-associated protein 1 (Nap1), a protein that regulates WAVE-mediated actin assembly. In astrocytoma U251 cells not expressing OL-pc, N...
متن کاملArabidopsis NAP1 Is Essential for Arp2/3-Dependent Trichome Morphogenesis
The dynamic nature of the eukaryotic actin cytoskeleton is essential for the locomotion of animal cells and the morphogenesis of plant and fungal cells. The F-actin nucleating/branching activity of the Arp2/3 complex is a key function for all of these processes. The SCAR/WAVE family represents a group of Arp2/3 activators that are associated with lamellipodia formation. A protein complex of PIR...
متن کاملRegulation of Rap1 activity is required for differential adhesion, cell-type patterning and morphogenesis in Dictyostelium.
Regulated cell adhesion and motility have important roles during growth, development and tissue homeostasis. Consequently, great efforts have been made to identify genes that control these processes. One candidate is Rap1, as it has been implicated in the regulation of adhesion and motility in cell culture. To further study the role of Rap1 during multicellular development, we generated a mutan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006